top of page

The Obsolescence of Seed Set TAR

Predictive coding or technology assisted review is often regarded as a process which involves a static 'seed set' that is used as a basis on which to categorize a full document set. A group of documents is identified through manual review. The software trains based on that seed set, which should contain documents which represent key concepts. A QC is done to find an acceptable 'overturn' rate - a low percentage of documents that must be re-categorized by a human reviewer - an indication that an effective seed set has been chosen. A report can be prepared to identify which seed set documents lead to the most overturns, and may need to be removed.


The obsolescence of this type of review (known as TAR 1.0), is evident in Relativity's decision to deprecate sample-based learning, a form of seed set based TAR. After September 2021, it will no longer be possible to run sample-based learning projects in Relativity.



After this September, Relativity will direct its clients to use Active Learning, a TAR 2.0 review process, which uses continUous active learning (CAL) to improve machine learning continuously as manual reviewers make coding decisions.

Sean O'Shea has more than 20 years of experience in the litigation support field with major law firms in New York and San Francisco.   He is an ACEDS Certified eDiscovery Specialist and a Relativity Certified Administrator.

The views expressed in this blog are those of the owner and do not reflect the views or opinions of the owner’s employer.

If you have a question or comment about this blog, please make a submission using the form to the right. 

Your details were sent successfully!

© 2015 by Sean O'Shea . Proudly created with Wix.com

bottom of page